Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 21, 2026
-
ABSTRACT Advances in digital phenotyping have opened the door to continuous, individualised monitoring of mental health, but realising the full potential of these data demands machine learning models that can operate effectively in ‘small‐data’ regimes—where per‐user data are sparse, irregular and noisy. This article explores the feasibility, challenges and opportunities of small‐data machine learning approaches for forecasting individual‐level mental health trajectories. We examine the limitations of traditional clinical tools and population‐level models and argue that fine‐grained time‐series forecasting, powered by models such as tabular prior‐data fitted networks (TabPFN), Gaussian processes, Kalman filters and meta‐learning strategies, offers a path towards personalised, proactive psychiatry. Emphasis is placed on key clinical requirements: real‐time adaptation, uncertainty quantification, feature‐level interpretability and respect for interindividual variability. We discuss implementation barriers including data quality, model transparency and ethical considerations and propose practical pathways for deployment—such as integrated biosensor platforms and just‐in‐time adaptive interventions (JITAIs). We highlight the emerging convergence of small‐data ML, mobile sensing and clinical insight as a transformative force in mental healthcare. With interdisciplinary collaboration and prospective validation, these technologies have the potential to shift psychiatry from reactive symptom management to anticipatory, personalised intervention.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Voting is used widely to identify a collective decision for a group of agents, based on their preferences. In this paper, we focus on evaluating and designing voting rules that support both the privacy of the voting agents and a notion of fairness over such agents. To do this, we introduce a novel notion of group fairness and adopt the existing notion of local differential privacy. We then evaluate the level of group fairness in several existing voting rules, as well as the trade-offs between fairness and privacy, showing that it is not possible to always obtain maximal economic efficiency with high fairness or high privacy levels. Then, we present both a machine learning and a constrained optimization approach to design new voting rules that are fair while maintaining a high level of economic efficiency. Finally, we empirically examine the effect of adding noise to create local differentially private voting rules and discuss the three-way trade-off between economic efficiency, fairness, and privacy.This paper appears in the special track on AI & Society.more » « less
-
This paper studies a stylized, yet natural, learning-to-rank problem and points out the critical incorrectness of a widely used nearest neighbor algorithm. We consider a model with n agents (users) {xi}i∈[n] and m alternatives (items) {yl}l∈[m], each of which is associated with a latent feature vector. Agents rank items nondeterministically according to the Plackett-Luce model, where the higher the utility of an item to the agent, the more likely this item will be ranked high by the agent. Our goal is to identify near neighbors of an arbitrary agent in the latent space for prediction. We first show that the Kendall-tau distance based kNN produces incorrect results in our model. Next, we propose a new anchor-based algorithm to find neighbors of an agent. A salient feature of our algorithm is that it leverages the rankings of many other agents (the so-called “anchors”) to determine the closeness/similarities of two agents. We provide a rigorous analysis for one-dimensional latent space, and complement the theoretical results with experiments on synthetic and real datasets. The experiments confirm that the new algorithm is robust and practical.more » « less
An official website of the United States government
